欢迎来到天天文库
浏览记录
ID:26665295
大小:287.50 KB
页数:17页
时间:2018-11-28
《2017-2018学年贵州省遵义市习水县高二(上)期末数学试卷(文科)含答案解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2017-2018学年遵义市习水县高二(上)期末数学试卷(文科)一、选择题(每小题5分,只有一个正确答案,共60分)1.(5分)如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h随时间t变化的可能图象是( )A.B.C.D.2.(5分)直线3x﹣4y=0截圆(x﹣1)2+(y﹣2)2=2所得弦长为( )A.4B.2C.2D.23.(5分)α,β,γ是三个平面,m,n是两条直线,下列命题正确的是( )A.若α∩β=m,n⊂α,m⊥n,则α⊥βB.若α⊥β,α∩β=m,α∩γ=n,则m⊥nC.若m⊥α,n⊥β,m∥n,则α∥βD.若m不垂直平面,则m
2、不可能垂直于平面α内的无数条直线4.(5分)设p:a=1,q:直线l1:ax+y﹣1=0与l2:3x+(a+2)y+1=0平行,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)已知命题p:∃x∈R,使sinx=;命题q:∀x∈R,都有x2+x+1>0,给出下列结论:①命题“p∧q”是真命题;②命题“p∧(¬q)”是假命题;③命题“(¬p)∨q”是真命题;④命题“(¬p)∨(¬q)”是假命题.其中正确的是( )A.②④B.②③C.③④D.①②③6.(5分)如图,将无盖正方体纸盒展开,线段AB,CD所在直线在原正方体
3、中的位置关系是( )A.平行B.相交且垂直C.异面D.相交成60°7.(5分)直线l:y=kx与双曲线C:x2﹣y2=2交于不同的两点,则斜率k的取值范围是( )A.(0,1)B.C.(﹣1,1)D.[﹣1,1]8.(5分)已知F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,若椭圆上存在点P,使∠F1PF2=90°,则椭圆的离心率e的取值范围为( )A.(0,]B.[,1)C.(0,]D.[,1)9.(5分)若函数f(x)在R上可导,且f(x)=x2+2f'(2)x﹣3,则( )A.f(0)<f(4)B.f(0)=f(4)C.f(0)>f(4)D.以上都
4、不对10.(5分)已知点P(x,y)在直线x﹣y﹣1=0上运动,则(x﹣2)2+(y﹣2)2的最小值为( )A.B.C.D.11.(5分)已知抛物线y2=8x的准线与双曲线交于A,B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率是( )A.B.2C.D.12.(5分)过正方形ABCD的顶点A,作PA⊥平面ABCD,若PA=BA,则平面ABP和平面CDP所成的锐二面角的大小是( )A.30°B.45°C.60°D.90° 二、填空题(每小题5分共20分)13.(5分)已知直线l1:ax+3y﹣1=0和l2:2x+(a﹣1)y+1=0垂直,则实数
5、a的值为 .14.(5分)已知底面是正方形的直四棱柱ABCD﹣A1B1C1D1的外接球的表面积为42π,且,则AC1与底面ABCD所成角的正切值为 .15.(5分)函数y=x2(x>0)的图象在点处的切线与x轴的交点的横坐标为an+1,n为正整数,若a1=16,则a1+a3+a5= .16.(5分)α,β是两个平面,m,n是两条直线,有下列四个命题:(1)如果m⊥n,m⊥α,n∥β,那么α⊥β.(2)如果m⊥α,n∥α,那么m⊥n.(3)如果α∥β,m⊂α,那么n∥β.(4)如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有 .(填写
6、所有正确命题的编号) 三、解答题(17题10分,其余各题均为12分共70分)17.(10分)已知命题p:∀x∈R,x2+a≥0,命题q:∃x∈R,使x2+(2+a)x+1=0.若命题“p且q”为真命题,求实数a的取值范围.18.(12分)已知圆C经过A(﹣2,1),B(5,0)两点,且圆心C在直线y=2x上.(1)求圆C的方程;(2)动直线l:(m+2)x+(2m+1)y﹣7m﹣8=0过定点M,斜率为1的直线m过点M,直线m和圆C相交于P,Q两点,求PQ的长度.19.(12分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1
7、<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.20.(12分)四棱锥P﹣ABCD中,PD=PC,底面ABCD为直角梯形,AB⊥BC,AB∥CD,CD=2AB,点M为CD的中点.(1)求证:AM∥平面PBC;(2)求证:CD⊥PA.21.(12分)已知函数f(x)=(x2+mx)ex(其中e为自然对数的底数).(1)当m=﹣2时,求函数f(x)的单调递增区间;(2)若函数f(x)在区间[1,3]上单调递减,求m的取值范围.22.(12分)已知椭圆过点,且离心率e=.(Ⅰ)求椭圆方程;(Ⅱ)若直线l:y=kx+
此文档下载收益归作者所有