欢迎来到天天文库
浏览记录
ID:23051979
大小:200.01 KB
页数:5页
时间:2018-11-03
《物理 《气体分子运动论》竞赛教案》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、§1.4气体分子运动论1.4.1、分子运动论的基本点1、宏观物体由大量分子组成。分子直径的数量级一般为,分子质量为。在标准状态下,气体分子的数密度为2、物体内的分子永不停息地作无规则运动。这是根据布朗运动和扩散现象得出的结论。实验表明扩散的快慢和布朗运动的激烈程度与温度的高低有明显的关系。由此常把大量子的无规则运动称为热运动,热运动是物质运动的一种基本形式,热现象是它的宏观表现。气体分子热运动的平均速率与温度的关系为常温下,。3、分子之间存在的相互作用力。分子之间同时存在引力和斥力,它们都随距离的增大而
2、减小。其合力具体表现为相吸引还是相排斥,取决于分子间的距离。当时,合力为零,分子间的距离的位置称为平衡位置;当r>时,分子力表现引力;当r<时,分子力表现为斥力;当r>时,分子力可忽略不计。分子力是保守力,存在着由分子和分子间相对位置所决定的势能称为分子力势能。分子力和热运动是决定物体宏观性质的基本因素。分子力作用倾向于使分子聚集一起,在空间形成某种有序排列;热运动却力图造成混乱存在向外扩散的趋势。1.4.2、理想气体的微观模型先来作个估算:在标准状态下,1mol气体体积,分子数,若分子直径,则分子间的
3、平均间距,相邻分子间的平均间距与分子直径相比。由此可知,气体分子间的距离比较大,在处理某些问题时,可以把气体分子视为没有大小的质点;同时可以认为气体分子除了相互碰撞或者跟器壁碰撞之外,分子力也忽略不计,分子在空间自由移动,也没有分子势能。因此理想气体是指分子间没有相互作用和分子可以看作质点的气体。这一微观模型与气体愈稀薄愈接近于理想气体的宏观概念是一致的。1.4.3、理想气体的压强宏观上测量的气体施给容器壁的压强,是大量气体分子对器壁不断碰撞的结果。在通常情况下,气体每秒碰撞的器壁的分子数可达。在数值上
4、,气体的压强等于单位时间内大量分子施给单位面积器壁的平均冲量。其表达式为式中n是分子数密度,是分子的平均平动动能,n和增大,意味着单位时间内碰撞单位面积器壁的分子数增多,分子碰撞器壁一次给予器壁的平均冲量增大,因而气体的压强增加。1.4.4、温度的微观意义将式代入式后,可以得到气体分子的平均平动动能为图1-4-1这被称为气体温度公式,温度升高,分子热运动的平均平动动能增大,分子热运动加剧。因此,气体的温度是气体分子平均平动能的标志,是分子热运动剧烈程度的量度。例1、质量为的圆筒水平地放置在真空中。质量、
5、厚度可忽略的活塞将圆筒分为体积相同的两部分(图1-4-1),圆筒的封闭部分充有n摩尔的单原子理想气体,气体的摩尔质量为M,温度为,突然放开活塞,气体逸出。试问圆筒的最后速度是多少?设摩擦力、圆筒和活塞的热交换以及气体重心的运动均忽略不计。(,,,氦的摩尔质量为,,)解:过程的第一阶段是绝热膨胀,膨胀到两倍体积后(图1-4-2)温度将是T。根据绝热方程,有m1m2图农历二〇〇一年三月初九因此:圆筒和活塞的总动能等于气体内能的损失,即根据动量守恒定律,解上述方程,得过程第一阶段结束时的圆筒速度:。由此得出结
6、论,在过程第一阶段的最后瞬间,圆筒以速度向右运动,此时活塞正好从圆筒冲出。我们把坐标系设置在圆筒上。所给的是一个在真空中开口的圆筒,筒内贮有质量为、温度为T的气体。显然,气体将向左上方流动,并推动圆筒向右以速度运动。气体分子的动能由下式给出:式中是分子的平均速度[注:指均方根速率],它由下述关系给定:平衡状态下各有1/6的分子在坐标轴方向来回运动。在计算气体逸出时,假定有1/6的分子向圆筒的底部运动。这自然只是一级近似。因此,的质量以速度向圆筒底部运动,并与筒底弹性碰撞,之后圆筒以速度、气体以速度运动。
7、对于弹性碰撞,动量守恒定律和机械守恒定律成立。由动量守恒有由机械能守恒有解以上方程组,得到气体逸出后的圆筒速度为气体分子的1/6以速度反弹回来,的绝对值要小于。气体必然有较低的温度,其一部分内能使圆筒的动能增加。速度相加后得圆筒速度为。代入所给的数据:;;;;;.得圆筒的最后速度为
此文档下载收益归作者所有