欢迎来到天天文库
浏览记录
ID:21945151
大小:647.50 KB
页数:95页
时间:2018-10-21
《计算机组成原理数据的机器运算》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第四章数据的机器运算计算机的主要功能是对数据进行各种加工和处理,包括加、减、乘、除这些基本的算术运算,与、或、非这些基本的逻辑运算,以及由此构成的其它复杂的运算。运算器则是实现这些运算的主要部件。无论多么复杂的运算,最终都要分解为加法运算来实现。其中,减法运算通过补码转化为加法来实现;乘、除运算可以转换为加减运算、移位操作来实现。加法和移位是计算机中最基本的两种运算操作。可见,加法器又是运算器的核心部件。在加法器的基础上增加移位功能,并通过选择输入控制条件,就可以实现所有的运算。1本章主要内容主要内容算术、逻辑
2、运算的实现定点加、减运算数的移位和舍入操作定点乘、除运算规格化浮点运算2一、算术逻辑运算的实现计算机中最基本的算术运算是加法运算,不论加、减、乘、除运算最终都可以归结为加法运算。所以首先讨论最基本、最核心的运算部件——加法器,以及并行加法器的进位问题。加法器是由全加器和其它必要的逻辑电路组成的,所以我们从全加器开始讨论。31、全加器(FA)全加器(FA)是最基本的运算单元,由它构成加法器。全加器有三个输入量:操作数Ai、Bi、以及低位传来的进位信号Ci-1。全加器有两个输出量:本位和Si、以及向高位的进位信号C
3、i。AiBiCi-1SiCi0000000110010100110110010101011100111111全加器真值表4全加器的逻辑方程和电路根据真值表得:Si=Ai⊕Bi⊕Ci-1Ci=AiBi+(Ai⊕Bi)Ci-1Si:本位和Ci:向高位的进位实现电路逻辑框图一个全加器只完成一位加法5全加器构成加法器全加器并不存储信息,可用门电路来实现。用全加器能够方便地构成加法器。加法器分为串行加法器和并行加法器。串行加法器只有一个全加器,数据逐位串行送入加法器进行计算。由于运算速度慢,一般不用。并行加法器则由若干个
4、这样的全加器构成,各位数据同时运算。并行加法器的位数与操作数的位数相等。并行加法器的最长运算时间主要取决于进位信号的传递时间。例如:11…11和00…01相加,最低位产生的进位将逐位影响到最高位.由此可见,提高并行加法器速度的关键是尽量加快进位产生和传递的速度。62、进位产生与传递进位链的概念:并行加法器中的每一个全加器都有一个从低位送来的进位输入和一个传送给高位的进位输出。我们把构成进位信号产生和传递的逻辑网络称为进位链。进位链上每一位的进位表达式为:Ci=AiBi+(Ai⊕Bi)Ci-1设Gi=AiBi,称
5、为进位产生函数Pi=Ai⊕Bi,称为进位传递函数∴进位表达式Ci=Gi+PiCi-17串行进位把n个全加器串联起来,就可以实现两个n位数的相加。这种加法器称为串行进位的并行加法器,串行进位又叫行波进位。其中:C1=G1+P1C0C2=G2+P2C1┇Cn=Gn+PnCn-1串行进位的并行加法器,总的延迟时间正比于字长,字长越长,总延迟时间也越长。若一位进位需2ty时间,完成n位进位就需要2nty.要提高加法运算速度,必须改进进位方式。83、并行加法器的快速进位改进串行进位方式的基本思路是让各进位同时形成,避免各
6、进位之间的依赖关系。现在来分析一下进位关系。展开C1=G1+P1C0;C2=G2+P2C1;…,Cn=Gn+PnCn-1得关系式:C1=G1+P1C0C2=G2+P2C1=G2+P2G1+P2P1C0C3=G3+P3C2=G3+P3G2+P3P2G1+P3P2P1C0C4=G4+P4C3=G4+P4G3+P4P3G2+P4P3P2G1+P4P3P2P1C0┇以上进位输出只与Gi、Pi以及最低进位C0有关,而且不依赖于其低位进位Ci-1的输入,因此各级进位可以同时产生,形成并行进位。9并行进位的特点并行进位的特点
7、是各级进位信号同时形成,与字长无关,提高了整体运算速度。并行进位又叫先行进位。最长延迟时间仅为2ty。随着加法器位数的增加,Ci的逻辑表达式会变得越来越长,输入变量会越来越多,电路结构也会变得越来越复杂,导致电路实现也越来越困难。并行进位方式需继续改进,才能有实用价值。这就是下面要介绍的分组进位方式。10以16位加法器为例,将其分为4组,每组4位。在组内,按照并行进位函数直接产生C1~C4,这些进位可同时得到。实现这种进位逻辑的电路称为4位先行进位电路(CLA),如74181ALU。利用这种4位一组的CLA电路
8、和4位全加器可以构成4位CLA加法器。注意,4位CLA加法器包含了两部分逻辑:4位全加器和4位一组的先行进位链,这个组内的进位为一级进位。在组间,每个组的进位输入是前一个组的进位输出,而每个组的进位输出是下一个组的进位输入.构成16位加法器很容易实现单级先行进位11单级先行进位(续一)上述组内并行、组间串行的进位方式也称为单级先行进位方式,原理如下图所示。12单级先行进位(续二)组内并
此文档下载收益归作者所有