资源描述:
《连铸三大件发展现状》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、word资料下载可编辑连铸“三大件”发展现状姓名:徐腾腾班级:无机非金属材料工程(卓越)1101学号:201102128116摘要:整体塞棒、长水口(大包长水口)和浸入式水口(中包所用水口),称为连铸“三大件”。连铸“三大件”在炼钢生产中处于十分重要的位置,主要起到保护浇注和控流的作用,他们质量的好坏对于连铸乃至整个钢厂生产的连续性与稳定性有重要的意义。其材质主要是铝碳质,以氧化铝和炭素为原料,大多数情况下还加入添加剂,如SiC、单质Si等,用沥青或树脂等有机结合剂粘结而成的碳复合耐火材料。成型方法采用等静压成型。本文主要从连铸“三大件”的原材料、生产过程
2、、应用及在使用中出现的问题分析其发展现状。关键词:连铸三大件发展现状Al2O3-C1前言进入2000年以后,随着连铸技术的日臻成熟,高效连铸技术已成为钢铁行业发展重点。高效连铸技术是以高拉速为核心,以高质量连铸坯无缺陷生产为基础,实现高连浇率、高作业率连铸的系统技术。连铸速度的提高、连浇时间的延长,通过保护浇铸水口的钢水流速流量也显著提高,因此对连铸用耐材提出了更高的要求。连铸过程中所用的整体塞棒、长水口和浸入式水口在生产技术、产品品种、质量水平方面,正逐步追赶纾解先进水平,取代某些进口产品,以满足我国炼铁生产发展的需要。延长连铸“三大件”的寿命是需求方最
3、大的要求,由其所处环境和组成考虑,主要提高他们对渣液的抗侵蚀能力和高温抗氧化性。本文简述我国连铸“三大件”的原料、生产过程、应用的发展现状;解决其存在的寿命低、成本高、生产复杂的问题。通过对其从原料到成品和所处环境的分析,以及与国外产品的对比,选择最合理的成分组成和成型方式,提高性价比。从而减少钢铁生产成本,促进钢铁工业的发展。2 连铸“三大件”使用环境专业技术资料word资料下载可编辑连铸“三大件”在连铸系统中所使用的位置如图:2.1塞棒塞棒的功能主要是用于中间包开闭,除能自动控制中间包至结晶器的钢水流量外,还可通过塞棒的吹氩孔,向中间包吹入氩气和其它惰
4、性气体,塞棒还具有控制钢流和净化的功能。连铸生产过程中,整体塞棒头部受侵蚀、冲刷严重,特别是浇铸某些特钢,如经Ca、Si处理的钢种或P、S合金化的高速切削钢,塞棒头部侵蚀过快,常因无法控制钢流速度而报废。整体塞棒使用前必须烘烤到800~1000℃方能使用,长时间的烘烤会使铝碳制品表面石墨氧化呈疏松状态,导致制品耐侵蚀性和使用寿命降低,在使用时会造成制品断裂和穿孔事故。2.2长水口当钢水由钢包向中间包浇注时,为了避免氧化和飞溅,在钢包底部的滑动水口的下端安装长水口,一端与下水口相连,另一端插入中间包的钢水内进行密封保护浇注。长水口其作用如下:(1)防止钢水二
5、次氧化,改善钢的质量;(2)减少钢中易氧化元素的氧化产物在水口内壁沉积,延长其使用寿命;(3)长水口可多次使用,降低耐火材料消耗。对铝碳质长水口,通过加入适量低膨胀材料(熔融石英、钛酸铝),增韧材料(氧化锆)和钢纤维补强等的基础上,为进一步改善其性能从材质上又采取提高水口中Al2O3含量,减少SiO2加入量,以确保热震性能,提高使用寿命。2.3浸入式水口在连铸技术中,浸入式水口渣线部位被严重侵蚀,以及防止氧化铝附着造成水口的堵塞,为提高铸坯质量,在中间包与结晶器之间设有浸入式水口,其主要作用是:(1)防止钢水二次氧化氮化和钢水的飞溅;(2)调节钢水流动状态
6、和注入速度;(3)防止保护渣非金属夹杂物卷入钢水中,对促进钢水中夹杂物的上浮起重要作用;(4)对边铸拉坯成材率和铸坯质量有决定性影响。浸入式水口具有一定的气孔率,同样具有透气性,外界空气在钢水流动产生的负压作用下渗透到水口内部,与钢水接触使其氧化。因此在长水口和浸入式水口的外表面必须涂一层防氧化釉层。专业技术资料word资料下载可编辑3 连铸“三大件”原料选择3.1简介近年来,国内连铸钢产量不断增加,连铸“三大件”大多采用Al2O3-C质材料制作,在使用条件最苛刻的部位如渣线、塞棒头等部位用ZrO2-C材料,并加入BN、Si3N4、B4C3、Al、Si以
7、及塞隆、阿隆等复合添加剂以提高其使用寿命。为满足特殊性能钢的需要,近年一些厂家还开发了低碳、无碳和低硅、无硅的复合产品。3.2骨料铝碳质耐火材料中的Al2O3组分主要选用电熔刚玉、烧结刚玉。电熔或烧结氧化铝原料的价格贵、硬度大。电熔氧化铝是指以高铝矾土或工业氧化铝为原料在电弧炉内熔融并除去杂质冷却后得到的熔块;其特点是氧化铝含量高,刚玉晶粒完整粗大,化学稳定性高。电熔刚玉有两种生产方法,一是间歇式熔块法(脱壳炉);二是半连续式倾倒法(炼钢电炉)。烧结氧化铝是以工业氧化铝为原料,经高温煅烧制的低气孔率氧化铝。碳在Al2O3-C制品中的作用如下:在颗粒空隙内或
8、在颗粒之间形成脉状网络碳链结构,形成“碳结合”,从而降低制品的气孔