欢迎来到天天文库
浏览记录
ID:15302976
大小:26.00 KB
页数:5页
时间:2018-08-02
《基于logistic回归下财务风险预警模型的构建》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、基于LOGISTIC回归下财务风险预警模型的构建 摘要:财务预警模型构建对企业的经营营运有着重要的指导意义,对企业财务工作人员与管理者的管理方针有着很强的影响。文章总结了以往的预警模型的构建,并运用逻辑回归得出了较实用的预警模型。 关键词:财务风险LOGISTIC回归独立样本T检验 中图分类号:F275文献标识码:A 文章编号:1004-4914(2013)07-106-02 随着市场经济的不断发展,我国的金融市场规则也愈发完善。不少公司也因为扩张速度过大,经营不善等原因陷入财务困境之中。不少学者开始研究判别企业的财务风险预警模
2、型。从最初的单因素判定模型到借鉴Z-score方法改进系数与变量得出的改进Z分法,再到主成分回归得出判定模型。同时另外一些学者使用单位概率模型,利用逻辑回归或Probit回归,得出概率模型判定企业陷入财务困境中的概率。 一、回归方法的简介与选择 回归分析中拟合程度较好的偏最小二乘法与岭回归不太适用于财务预警模型的构建。因为偏最小二乘法与岭回归虽然对模型的拟合程度较高,但由于各自的方法较为繁琐,其中的个别系数需要人为判断,因此两种方法对财务风险模型的构建不是很成熟。岭回归的k系数就是人为得到的,k值越大则回归系数比较平稳,但误差也随之增
3、大,因此在较复杂的多变量模型中岭参数的k值确定较难。 本文中采用比较成熟的单位概率模型中的逻辑回归进行构建模型。它是含定性变量的模型。由于线性回归中的基本假设之一,就是因变量是随机的。然后一个企业是否陷入财务困境只有两种情况,显然不是随机的,因而不能直接采取线性模型进行拟合。由于定义企业陷入财务危机的情况为0,财务状况良好的情况为1,使得Y值只有两个可能性,即0与1。在这种情况下一般的线性模型Yi=β0+β1X1不符合一般假设,但Yi的均值有着比较特殊的意义,Yi是0-1型分布,它有如下的分布律:P(Yi=1)=πi,P(Yi=0)=1
4、-πi。因此有Y的期望值为,E(Yi)=1*πi+0*(1-πi)=πi。由于πi值是概率值,因此是随机的,从而符合线性回归的基本假设之一,修正了之前的缺点,可以使用线性模型进行拟合。 二、指标选择 由于企业陷入财务危机并非一朝一夕,它是一个持久的过程,因此采取当年ST公司的财务指标不妥,沪深交易所是根据上市公司前一年的财务状况对上市公司在本年进行特别处理,因而采取新增ST公司的前两年的数据较妥。本文抽取了23家2012年新增ST上市公司的2010年年报的数据指标,与之对应的抽取了37家2012年正常上市公司的2010年年报指标(财务
5、指标均来自于锐思数据库),两者作为总体样本,进行分组检验。下面进行指标筛选。 由于财务指标特别烦杂,且不同性质的企业指标区别很大,更极端的情况下是有的指标不存在,因此首先做初步筛选。如可持续增长率这一过于理想化的指标在很多企业都是不存在的,无法进行比较判断。还有的指标过于保守,如现金比率也不宜进入模型的构建。考虑到实用性与常见性,初步选择如下10个指标进行检验。反应盈利能力的:净资产收益率,资产净利率,销售净利率,销售费用率,管理费用率,财务费用率;反映短期偿债能力的:流动比率,速动比率;反应成长性的:营业收入增长率,股东权益相对年初增
6、长率;反应营运能力的:存货周转率,应收账款周转率,总资产周转率;反应长期偿债能力的资产负债率,流动负债比重,与流动负债占总资产的比重。 为了判断陷入财务困境与非财务困境公司的区别,使用独立样本T检验,将之分为两组。独立样本T检验是检验其独立总体的均值是否一样,当sig值较小,低于置信水平时,我们认为此指标显著,予以保留。 依据独立样本T检验,第一列的sig值是为了判断方差是否相等,一般来说若第一列的sig值大于0.15,在LeveneTestforEqualityofVariance中就认为方差是相等的,所以应考察第一行。若较下,则认
7、为方差不等,考察第二行。第二列中的sig值是判断是否有显著差异,由于原假设是无显著差异,因此我们希望第二列的sig值较小,小于置信水平,拒绝原假设,此变量的回归系数不为0,对模型有显著影响。从表中可看出,有显著性差异的为净资产收益率(平均),资产净利率,股东权益增长率,资产负债率,流动负债比率五个指标。 在用过独立样本T检验之后得出的5个指标不能直接用于逻辑回归模型的构建,因为尚未对之进行多重共线性判断。多重共线性判断的方法主要有两种,方差因子扩大因子法与特征根条件数法。方差扩大因子的定义式为Cjj=1/(1-Rj)(1+Rj),Rj为
8、自变量Xj对其余p-1个自变量的决定系数。Rj2越接近1,VIFj也就越大,自变量之间的多重共线性就越严重,经验表明当VIF≥10时,存在严重的多重共线性。特征根条件数法来自于矩阵,即矩阵的行
此文档下载收益归作者所有