an introduction to probability theory - geiss

an introduction to probability theory - geiss

ID:14366187

大小:338.94 KB

页数:71页

时间:2018-07-28

an introduction to probability theory - geiss_第1页
an introduction to probability theory - geiss_第2页
an introduction to probability theory - geiss_第3页
an introduction to probability theory - geiss_第4页
an introduction to probability theory - geiss_第5页
资源描述:

《an introduction to probability theory - geiss》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AnintroductiontoprobabilitytheoryChristelGeissandStefanGeissFebruary19,20042Contents1Probabilityspaces71.1Definitionofσ-algebras......................81.2Probabilitymeasures.......................121.3Examplesofdistributions....................201.3.1Binomialdistributionwithparameter0

2、0.......211.3.3Geometricdistributionwithparameter00......................221.3.6ExponentialdistributiononRwithparameterλ>0.

3、221.3.7Poisson’sTheorem....................241.4AsetwhichisnotaBorelset..................252Randomvariables292.1Randomvariables.........................292.2Measurablemaps.........................312.3Independence...........................353Integration393.1Definitionoftheexpectedval

4、ue.................393.2Basicpropertiesoftheexpectedvalue..............423.3ConnectionstotheRiemann-integral..............483.4Changeofvariablesintheexpectedvalue............493.5Fubini’sTheorem.........................513.6Someinequalities.........................584Modesofconvergen

5、ce634.1Definitions.............................634.2Someapplications.........................6434CONTENTSIntroductionThemodernperiodofprobabilitytheoryisconnectedwithnameslikeS.N.Bernstein(1880-1968),E.Borel(1871-1956),andA.N.Kolmogorov(1903-1987).Inparticular,in1933A.N.Kolmogorovpubl

6、ishedhismodernap-proachofProbabilityTheory,includingthenotionofameasurablespaceandaprobabilityspace.Thislecturewillstartfromthisnotion,tocontinuewithrandomvariablesandbasicpartsofintegrationtheory,andtofinishwithsomefirstlimittheorems.Thelectureisbasedonamathematicalaxiomaticapproachan

7、disintendedforstudentsfrommathematics,butalsoforotherstudentswhoneedmoremathematicalbackgroundfortheirfurtherstudies.WeassumethattheintegrationwithrespecttotheRiemann-integralonthereallineisknown.Theapproach,wefollow,seemstobeinthebeginningmoredifficult.Butonceonehasasolidbasis,manythi

8、ngswillbeeas

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。