资源描述:
《数列的通项公式教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数列的通项公式教案篇一:数列的通项公式教案篇二:数列通项公式教学设计数列通项公式教学设计123篇三:求数列通项公式的常用方法教案例题习题求数列的通项公式常用方法1.定义法:①等差数列通项公式;②等比数列通项公式。例1.等差数列?an?是递增数列,前n项和为Sn,且a1,a3,a9成等比数列,2.求数列?an?的通项公式.S5?a5解:设数列?an?公差为d(d?0)2∵a1,a3,a9成等比数列,∴a3?a1a9,即(a1?2d)2?a1(a1?8d)?d2?a1d∵d?0,∴a1?d………………………………①2∵S
2、5?a5∴5a1?5?4?d?(a1?4d)2…………②233,d?55333∴an??(n?1)??n555由①②得:a1?点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。练一练:已知数列31111,5,7,9,?试写出其一个通项公式:__________;481632S,(n?1)an?12.公式法:已知Sn(即a1?a2???an?f(n))求an,用作差法:。Sn?Sn?1,(n?2)例2.已知数列?an?的前n项和Sn满足Sn?2an?(?1)n,n?1.求数列?an?
3、的通项公式。解:由a1?S1?2a1?1?a1?1na?S?S?2(a?a)?2?(?1),n?2nnn?1nn?1当时,有??an?2an?1?2?(?1)n?1,an?1?2an?2?2?(?1)n?2,……,a2?2a1?2.?an?2n?1a1?2n?1?(?1)?2n?2?(?1)2???2?(?1)n?1?2n?1?(?1)n[(?2)n?1?(?2)n?2???(?2)]?2n?12[1?(?2)n?1]?(?1)3n2?[2n?2?(?1)n?1].3经验证a1?1也满足上式,所以an?点评:利用公式
4、an??2n?2[2?(?1)n?1]3?Sn????????????????n?1求解时,要注意对n分类讨论,但若?Sn?Sn?1???????n?2能合写时一定要合并.练一练:①已知{an}的前n项和满足log2(Sn?1)?n?1,求an;②数列{an}满足a1?4,Sn?Sn?1?5an?1,求an;3f(1),(n?1)??f(n)3.作商法:已知a1?。a2???an?f(n)求an,用作商法:an??,(n?2)??f(n?1)如数列{an}中,a1?1,对所有的n?2都有a1a2a3?an?n2,则a
5、3?a5?4.累加法:若an?1?an?f(n)求an:an?(an?an?1)?(an?1?an?2)???(a2?a1)?a1(n?2)。11例3.已知数列?an?满足a1?,an?1?an?2,求an。2n?n解:由条件知:an?1?an?1111???2n?nn(n?1)nn?1分别令n?1,2,3,??????,(n?1),代入上式得(n?1)个等式累加之,即(a2?a1)?(a3?a2)?(a4?a3)????????(an?an?1)1111111?(1?)?(?)?(?)????????(?)2233
6、4n?1n1所以an?a1?1?n11131?a1?,?an??1???22n2n如已知数列{an}满足a1?1,an?an?1?1n?1?n(n?2),则an;an?1aaa?f(n)求an,用累乘法:an?n?n?1???2?a1(n?2)。anan?1an?2a12nan,求an。例4.已知数列?an?满足a1?,an?1?3n?15.累乘法:已知解:由条件知an?1n,分别令n?1,2,3,??????,(n?1),代入上式得?ann?1(n?1)个等式累乘之,即aaa2a3a4123n?11????????
7、??n????????????n?na1a2a3an?1234a1n又?a1?22,?an?33n如已知数列{an}中,a1?2,前n项和Sn,若Sn?n2an,求an6.已知递推关系求an,用构造法(构造等差、等比数列)。(1)形如an?kan?1?b、an?kan?1?bn(k,b为常数)的递推数列都可以用待定系数法转化为公比为k的等比数列后,再求an。①an?kan?1?b解法:把原递推公式转化为:an?1?t?p(an?t),其中t?例5.已知数列?an?中,a1?1,an?1?2an?3,求an.解:设递推
8、公式an?1?2an?3可以转化为an?1?t?2(an?t)即q,再利用换元法转化为等比数列求解。1?pan?1?2an?t?t??3.故递推公式为an?1?3?2(an?3),令bn?an?3,则b1?a1?3?4,且bn?1an?1?3??2bnan?3所以?bn?是以b1?4为首项,2为公比的等比数列,则bn?4?2n?1?2n?1,所