非线性偏微分方程

非线性偏微分方程

ID:10874206

大小:440.00 KB

页数:19页

时间:2018-07-08

非线性偏微分方程_第1页
非线性偏微分方程_第2页
非线性偏微分方程_第3页
非线性偏微分方程_第4页
非线性偏微分方程_第5页
资源描述:

《非线性偏微分方程》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、非线性偏微分方程及其几种解法综述姓名:柏宝红学号:BY1004120目录1、绪论31.1背景41.2现状82、非线性偏微分方程的几种解法102.1逆算符法102.2齐次平衡法112.3Jacobi椭圆函数方法132.4辅助方程方法142.5F-展开法162.6双曲正切函数展开法181、绪论以应用为目的,或以物理、力学等其他学科问题为背景的微分方程的研究,不仅是传统应用数学中一个最主要的内容,也是当代数学的一个重要组成部分.它是数学理论与实际应用之间的一座重要桥梁,研究工作一直十分活跃,研究领域日益扩大。目前微分方程研究的主体是非线性微分方程,特别是非线性偏微分方程(N

2、LPDE).很多意义重大的自然科学和工程技术问题都可归结为非线性偏微分方程的研究.现实生活的许多领域内数学模型都可以用NLPDE来描述,很多重要的物理、力学等学科的基本方程本身就是NLPDE,另外,随着研究的深入,有些原先可用线性微分方程近似处理的问题,也必须考虑非线性的影响,所以对NLPDE的研究,特别是NLPDE求解精确解的研究工作就显示出了很重要的理论和应用价值,但是数学研究的结果,在目前还未能提供一种普遍有效的求精确解的方法.20世纪50年代以来,人们对非线性现象的研究中提出了“孤子”的概念,进而使得对NLPDE求解的研究成为非线性科学中的热点。下面介绍一下孤

3、立子理论的研究背景、研究现状。1.1背景孤立子理论己经成为应用数学和数学物理的一个重要组成部分,在流体力学,等离子物理,经典场论,量子论等领域有着广泛的应用。随着近代物理学和数学的发展,早在1834年由英国科学家Russell发现的孤立波现象近二十多年来引起了人们的极大关注,对这一现象的兴趣与日俱增.这是因为一方面孤立子具有粒子和波的许多性能,在自然界中有一定的普遍性,利用孤立子理论也成功地解释了许多物理上长期用经典理论未能解答的现象;另一方面,随着孤立子物理问题的深入研究,孤立子的数学理论也应运而生,并已初步形成比较完善的理论体系。孤立子理论自1965年由Zabus

4、ky和Kruskal对孤立子(Soliton,简称孤子)命名后得到了迅速地发展.究其原因是孤波现象无所不在,从天上涡旋星系的密度波,线,超流氦一3,超导JosePhson结,磁学,结构相变,液晶,流体动力学以及基本粒子等,都与孤子有关.其发展大致可分三个阶段:第一阶段,主要是在19世纪.最早讨论孤立子问题的是ScottRussell。1844年英国工程师Russell发现船在运河中快速行驶着,当这条船突然停止时,在船头附近产生了一个光滑的、像小山包一样的水波,然后这个水波离开船头保持它的形状和速度保持不变,接着这个水波的高度逐渐减少,最后在运河的一个拐弯处消失掉,他把

5、这种水波称为孤立波,认为它就是流体运动的一个稳定解.直到1895年,荷兰阿姆斯特丹大学的Korteweg教授和他的学生devries才一成功导出了著名KdV方程,求出了与Russell描述一致的即具有形状不变的脉冲状的孤立波解,在理论上证实了孤立波的存在,并对孤立波现象作了较为完整的分析,解释了Russell的浅水波,解决了这个问题。他们的数学模型为(1.1)孤立波解为:后人称为1一孤立子解,如果令,那么在平面上的图为图1.1所示图1.1光滑孤立子在平面上的图形1965年美国数学家Kruskal和abusky对KdV方程的孤立波解进行数学模拟,他们发现两个孤立波相撞之

6、后,各自的运动方向和大小形状都保持不变.这种性质与物理中粒子的性质类似,因此他们称这种孤立波为孤立子.在通常情况下,人们把孤立波和孤立子混为一谈,不把它们区别开来。与此同时,在1876一1882年发现的Backlund变换,成为后来发展孤子理论的重要基础。第二阶段大致可划在1955一1975年。1955年,Fermi,Pasta,Ulam(FPU)将64个质点用非线性弹簧连成一条非线性振动弦,用计算机计算了一维非线性晶格在各个振动模之间的转换。初始时,这些谐振子的所有能量都集中在一个质点上,其他63个质点的初始能量为零。按照经典的理论,只要非线性效应存在,就会有能量均

7、分,各态历经等现象出现,即任何微弱的非线性相互作用,可导致系统的非平衡状态向平衡状态的过渡。但实际计算的结果却与经典理论是背道而驰.实际上,经过相当长时间之后,能量似乎又回到了原来的初始分布,这就是著名的FPU问题。由于FPU问题是在频域空间考察的,未能发现孤波解,因此该问题未能得到正确的解释。后来,人们发现可以把晶体看成具有质量的弹簧拉成的链条,这恰好是Fermi研究的情况。Toda研究了这种模式的非线性振动,得到了孤波解,使FPU问题得到正确的解答,从而进一步激发起人们对孤立波的研究兴趣。1965年,zabusky和Kxusal对等离子体中孤立波

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。